

Chemical Hot Gas cleaning of Alkali, Chlorine, and Sulphur Species in a Sorption Enhanced Gasification Process at 650 °C

Markus Kopsch ^{a, 1}, **Patrick Schuster** ^a, **Elena Yazhenskikh** ^a, **Jürgen Sitzmann** ^b, **Michael Müller** ^a

^a Institute of Energy Materials and Devices (IMD-1), Wilhelm-Johnen Straße, 52428 Jülich, Forschungszentrum Jülich GmbH, Germany

^b Calida Cleantech GmbH, Adlerstraße 2, 91560, Heilsbronn, Germany

Abstract:

10 The European GICO-Project aimed to develop an advanced approach to convert energy from biomass into
11 biofuel and on-demand power production. In the GICO-Process, a H₂-rich hot gas stream of a gasifier
12 operating at 650 °C has to be cleaned from inorganic contaminants, e.g. H₂S, HCl, and KCl, to protect
13 downstream equipment, e.g. membranes, SOFC and a plasma reactor from corrosion. The use of CaO as a
14 primary sorption material in the gasification reactor reduces the CO₂ amount by forming CaCO₃. Moreover,
15 CaO reduces the H₂S and HCl concentration in the gasifier by forming CaS, respectively CaCl₂. However,
16 previous studies have shown that these reactions are not sufficient to reduce the H₂S and HCl
17 concentrations below the demanded 1 ppm_v goal. Thus, secondary hot gas cleaning is necessary. As
18 standard sorbents are only used at temperatures up to 600 °C, further consideration of new sorbents
19 developed and investigated in this work is of particular interest.

20 Thermodynamic model calculations and sorption experiments in lab-scale furnaces were conducted to
21 determine if chemical hot gas cleaning concepts can effectively remove sour gas and alkali components
22 from the syngas leaving a gasification unit operating at 650 °C. In contrast to other studies, gases such as
23 CO₂, H₂O, H₂, and CO were not substituted in the sorption experiments. This realistic gas composition

¹ Corresponding author: m.kopsch@fz-juelich.de (Markus Kopsch)

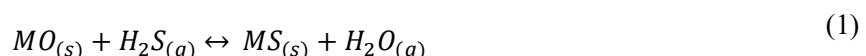
24 represents a novel approach at 650 °C, allowing for more representative and reliable experimental results.
25 Using a mass spectrometer, it was possible to record the H₂, CO₂, H₂S, and HCl concentrations during the
26 sorption experiments simultaneously, although the input concentrations of the gas components (H₂: 72
27 vol-%, CO₂: 1 vol-%, H₂S: 60 ppm_v and HCl: 40 ppm_v) were differing strongly. Zinc titanate, as a conventional
28 sulfur sorbent, reduced the H₂S concentration in the experiments to around 7 ppm_v. Ba-, Sr-, and Ce-
29 containing sorbents achieved H₂S concentrations below 1 ppm_v for several hours, which should be
30 sufficient to prevent poisoning of the nickel catalyst. 6 aluminosilicates, i.e. Bauxite, Clinoptilolite, Kaolin,
31 Bentonite, Montmorillonite, and Cat litter, have been proven to be suitable for KCl reduction to values
32 below 1 ppm_v.

33

34 **Key Words: Hot Gas Conditiong (HGC), Sorption, Sorption Enhanced Gasification (SEG)**

35

36 **1 Introduction**


37 Although gasification of biomass is technically advanced and has been implemented on a large scale
38 several times, one of the main existing challenges is the development of a resource-saving and cost-
39 effective hot gas conditioning (HGC) system to produce highly pure synthesis gas [1–3]. Impurities
40 contained in syngas include particulates, tars, and inorganics, posing environmental risks. HGC can be used
41 to reduce organic (e.g. tars) and inorganic contaminants (e.g. sulfur, chlorine, alkali metals) released from
42 low-cost fuels during gasification. H₂S, KCl, and HCl are the main contaminants produced during biomass
43 gasification [4, 5]. Moreover, there is a huge difference in terms of contaminant concentration ranging
44 from a few ppm_v to over 1000 ppm_v depending on the biomass.

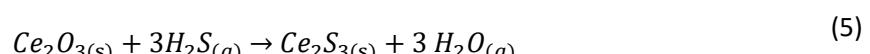
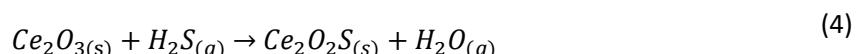
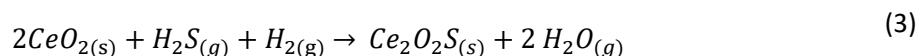
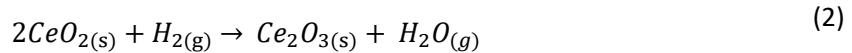
45 The EU project GICO ("Gasification Integrated with CO₂ capture and conversion") [6] focused on the
46 development of small to medium scale residual biomass plants based on sorption enhanced gasification.
47 The use of CaO sorbents in a low-temperature-fluidised-bed-gasifier operating at 650 °C shifts the
48 thermodynamic equilibrium towards higher H₂ concentrations (from approximately 40% H₂ to 75% H₂)

49 which is beneficial for the operation of a high temperature fuel cell. Simultaneously, a CO₂-rich gas stream
50 is produced by calcination of the resulting calcium carbonate at 920 °C allowing for carbon capture and
51 utilization. In this process, two hot gas streams need to be purified to protect downstream equipment like
52 membranes, fuel cells, and plasma reactors.

53 In the GICO-process, different sulfur compounds are present in gases in different operating units, with SO₂
54 predominating in calciner gases and H₂S being a by-product of gasification. However, small quantities of
55 each product can be found in either unit. Consequently, it is important to distinguish between HGC
56 methods that remove SO₂ from calciner gases and those that remove H₂S from the gasifier gases. Since
57 H₂S is one of the most problematic sulfur contaminants under gasification conditions, its removal is
58 necessary. However, currently used techniques like wet scrubbing are producing by-products that need to
59 be further treated. Moreover, they are energy intense due to the thermal management (cooling and
60 heating steps) of the feed stream.

61 Therefore, investigations on chemical HGC were conducted and showed that metal oxides are suitable for
62 sulfur reduction [7–9]. Several Mn-, Ca-, Cu-, Fe-, and Zn-based sorbents with high sulfur capacity have
63 been developed in the temperature range up to 600 °C [10]. It is possible to achieve H₂S concentrations of
64 1–5 ppm_v for Cu-based sorbents to 10 ppm_v for zinc ferrites in gasifier-derived gases [9, 11]. Although
65 reaction 1 shows that the sorption reaction is sensitive to water, many syngases used for H₂S sorption
66 investigations were only balanced with N₂ or He [12–18].

67 In order to fulfill the requirement of a nickel catalyst for 1 ppm_v H₂S in the high temperature range of 800–
68 900 °C, investigations were carried out with barium-based sorbents. Thermodynamic calculations
69 indicated that stabilized Ba sorbents should retain 1 ppm_v H₂S, therefore the stabilization of the sorbent
70 by CaO was investigated [19].

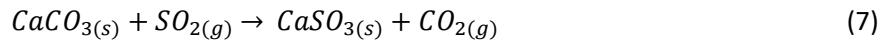
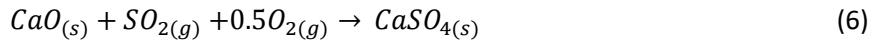




71 CaO-BaO shows low solubility at temperatures above 1200 °C. Therefore, in previous studies a sorbent
72 was prepared from a mixture of BaO and CaO. The sorbent reduced the H₂S concentrations to values below
73 0.5 ppm_v in the temperature range of 800-900 °C. The XRD analysis confirmed the stabilization effect by
74 the appearance of a BaS phase in the sorbent, which should normally be unstable under these conditions.

75 At temperatures below 760 °C, the remaining H₂S concentration increased strongly due to the
76 carbonization of the sorbent [10].

77 Another potential second-generation sorbent for high-temperature gas desulfurization that has been
78 studied is cerium oxide. Reversible adsorption of H₂S on cerium oxide surfaces has been demonstrated
79 over many cycles at temperatures as high as 800 °C [20, 21]. Despite the fact that CeO₂ will react with H₂S,
80 the reaction thermodynamics do not allow H₂S target levels of about 20 ppm_v to be achieved. CeO₂ is
81 reduced at high temperatures to a nonstoichiometric oxide, CeO_n (n < 2), which is superior to CeO₂ in
82 removing H₂S. As a function of temperature, pressure, feed gas composition, and flow rate, the reduction
83 and sulfidation reactions were studied in fixed-bed reactors.

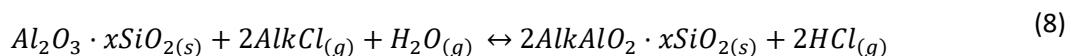
84

85 Ce₂O₃ forms an oxysulfide with H₂S, but also Ce₂S₃ (see reactions 2-5). The H₂S vapor pressure over Ce₂S₃
86 is greater than the vapor pressure of H₂S over Ce₂O₂S.

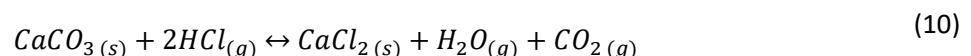
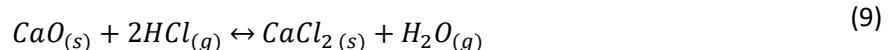


87 It has been shown that it is marginally more effective to produce CeO_n as a separate step before reduction
88 rather than simultaneously combined reduction and sulfidation. Despite this, both approaches were able
89 to reduce H₂S below the levels of 20 ppm_v [20]. Table 1 summarizes the estimated tolerance limits for H₂S
90 that are expected to severely affect solid oxide fuel cells (SOFC) performance.

91 **Table 1: Tolerance limits of inorganic contaminants for SOFC [22, 23]**

Contaminant	Concentration [ppm _v]
H ₂ S	1-3
HCl	10-200
Alkali	10-200


92 However, lower concentrations of detrimental inorganic species in the syngas can not only be achieved by
93 gas purification but also by impurity retention. Additives, such as lime, dolomite, or kaolin to reduce the
94 release of sulfur and alkali species can be added to the fuel [24, 25]. In conventional direct combustion
95 processes, the most common technology to reduce sulfur at high temperature revolves around pulverizing
96 CaCO₃ or dolomite, which is then fed into the combustion chamber. This means that SO₂ is removed right
97 after combustion, before any gaseous material is produced. In general, it can be concluded that at higher

98 temperatures (approximately 800 °C) CaSO_4 will be produced (reaction 6), while at lower temperatures, in
99 the 450–800 °C region, the solid products are CaS and CaSO_3 (reaction 7) as well as CaSO_4 [9].

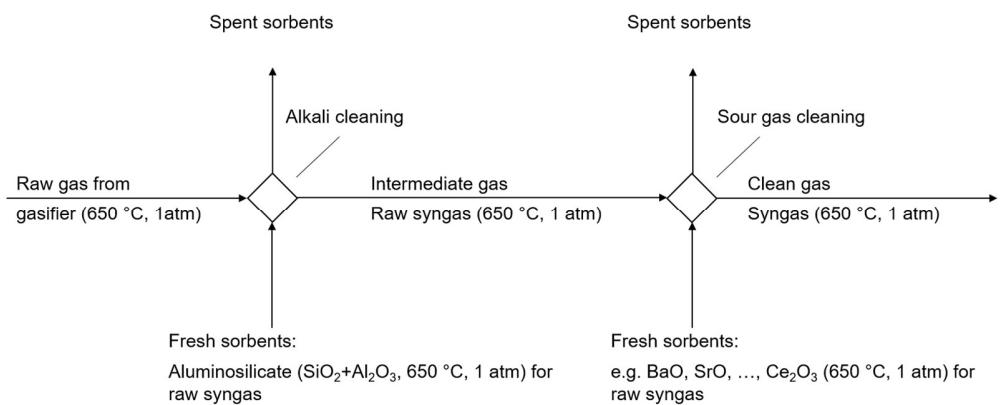


100 CaSO_4 has a molar volume three times greater than CaO . Therefore, the molar volume of CaSO_4 produced
101 during sulfidation will exceed the molar volume of CaO consumed, resulting in an increase in the amount
102 of pore blockage that gradually eliminates SO_2 access to the active surface of CaO [9].

103 Alkali sorption experiments on aluminosilicates (bauxite, bentonite, kaolinite, etc.) have been undertaken
104 in various temperature ranges over the past few decades [26, 27]. Concentrations of a few hundred ppb_v
105 were achieved for several hours at 800 °C [10]. However, reaction 8 indicates the necessity of water [28,
106 29]. Without water, the sorption reaction cannot take place.

107 Moreover, several studies have been conducted to model the capture of K-species on Al-Si additives in
108 literature [30]. However, the current models have some limitations. One common issue is that many
109 models do not have a maximum limit to the capture value, which makes them unsuitable for use in a
110 pulverised fuel power plant. Additionally, some models do not consider gas phase reactions (e.g. between
111 KCl and H_2O to form KOH), which can introduce errors when considering reactive species like KCl. Another
112 drawback is the lack of consideration for multicomponent sorption, where both KOH and KCl may be
113 present in the gas phase and could potentially compete with each other in sorption reactions.

114 Although it is a modest air pollutant, HCl gas is troublesome because of its high solubility and corrosive
115 nature [31, 32]. That is the reason why its removal is an important issue. Studies on Ca-based sorbents
116 indicated a high conversion rate for HCl between 400–650 °C [33–35]. Reactions 9 and 10 show the
117 mechanisms for HCl sorption on CaO .

118 Thermodynamic investigations have shown that only a concentration of 600 ppm_v can be achieved during
119 HCl sorption on Ca-based sorbents above 800 °C [36]. However, in a dry atmosphere, HCl has been reduced
120 below 1 ppm_v [37, 38] by stabilizing calcium in an aluminosilicate phase (hydrogrossular). Further studies
121 are required to determine the HCl concentration achieved by the hydrogrossular in a humid reducing
122 atmosphere [4]. Sufficient HCl removal with Na₂CO₃, K₂CO₃, and dried distillers grains with solubles (DDGS)
123 ash has also been demonstrated for temperatures up to 550 °C at Forschungszentrum Jülich [39]. To
124 determine kinetically effects, a gas stream consisting of 66 % He, 4 % H₂, and 30 % H₂O was varied between
125 2-4 l/min. The length of the sorbent fill varied from 25 mm to 100 mm. The HCl sorption on Na₂CO₃ and
126 K₂CO₃ at temperatures between 400 °C and 550 °C showed that this reaction is kinetically limited. In order
127 to prevent the limitation through kinetics, the space velocity has to be reduced to 4900 h⁻¹ for the Na₂CO₃
128 sorbent and to 3750 h⁻¹ for the K₂CO₃ sorbent. However, HCl concentrations of 1 ppm_v are achievable
129 below these space velocities.


130 The aim of this work was to investigate suitable sorbents for hot gas cleaning downstream of the gasifier.
131 The hot gas cleaning system should operate at 650 °C, just like the gasifier itself, in order to avoid heat
132 losses. The fact that the stream leaving the gasifier has a low CO₂ concentration due to the reaction with
133 CaO and a high H₂ concentration due to the water gas shift reaction was given special consideration when
134 selecting suitable sorbents. Because the sorptive removal of KCl has already been tested with
135 aluminosilicates at higher temperatures, this work focused more on the removal of H₂S.

136

137 **2 Modeling and Experimental Section**

138 A model for describing both the release and the removal of trace substances in syngases was created. The
139 aim was to determine the limits of sorptive alkali and sour gas removal. For the thermodynamic

140 equilibrium calculations, FactSage [40] with the in-house developed oxide database GTKT [41] and the
 141 commercial database SGPS were used. While the model for the release calculations for several biomass
 142 fuels can be found in [42], Figure 1 shows the calculation scheme for the subsequent hot gas cleaning. The
 143 resulting gas compositions from the release model was used as input for the present calculations. The
 144 concept consists of an alkali and a sour gas cleaning unit. The gas is brought into contact with various
 145 sorption materials. The sorbents were added in stoichiometric excess, so that the resulting concentrations
 146 are the minimum achievable with the respective sorbents and temperature. Moreover, no further gas-
 147 solid reactions can occur. Since HCl is released during alkali cleaning with aluminosilicates (reaction 8), the
 148 sour gas cleaning unit must be located afterwards.

149
 150 **Figure 1: Schematic representation of the HGC calculations**
 151
 152 **2.1 Experimental setup and sorbent materials for KCl sorption**
 153 Except for the gas analysis, the experimental setups for the KCl sorption and the sour gas sorption were
 154 almost identical: A synthetically mixed syngas loaded with impurities was led through a sorbent bed in a
 155 tube furnace. This type of experimental setup has been used successfully in several previous studies [43–
 156 45]. All sorption experiments were conducted as fixed bed investigations at atmospheric pressure. The KCl
 157 sorption tests were stopped after 20 h since no increase in the corresponding signal could be detected.

158 The KCl sorption experimental setup consisted of a tube furnace with five independent heating zones. A
159 high-density Al_2O_3 -tube was used as the reaction tube. This material does not bind any alkalis at
160 temperatures below 1000 °C. The KCl concentration was determined by molecular beam mass
161 spectrometry (MBMS) as described in detail in [18].

162 Since previous thermodynamic calculations showed that the substitution of a simulated flue gas by helium
163 has no influence on the KCl sorption [4, 46], the syngas was synthetically mixed from 10 % H_2 and 83 % He.
164 The gas stream was further loaded with 7 % H_2O by flowing through a vaporizer. The gas mix (4 l/min)
165 flowed through a flange into the cold end of the Al_2O_3 tube.

166 The Al_2O_3 tube had an inner diameter of 25 mm and a length of 870 mm. It was installed horizontally in a
167 5-zone furnace with an additional heating at the outlet. The additional heating was used to prevent the
168 KCl from condensing at the inlet of the MBMS. The syngas was loaded with approximately 25 ppm_v KCl
169 shortly after flowing into the Al_2O_3 pipe by overflowing a 750 °C hot Al_2O_3 boat filled with KCl (alkaline
170 source). The contact surface of the KCl with the syngas stream was approximately 900 mm².

171 The KCl loaded syngas then flowed through the bed of an aluminosilicate sorbent at 650 °C. To completely
172 cover the pipe cross-section with sorbent material, the sorbent was pressed between two Al_2O_3 -frits. The
173 frits had a material thickness of 10 mm and consisted of a coarse-pored high-temperature Al_2O_3 -foam. To
174 reduce the flow resistance the sorbent was fractionated to a grain size between 1.6 and 4 mm.
175 Approximately 30 g of sorbent were used per bed corresponding to a bed length of 50 mm.

176 The experimental setup such as syngas composition, syngas volume flow, general settings of the MBMS
177 (ionization voltage, multiplier voltage, optics) was kept constant.

178 The chemical composition and the specific surface areas of the sorbents are given in Table 2 and Table 3.
179 Before the BET measurement, the samples were outgassed by heating in a vacuum at 300 °C for 1 h. The
180 materials used for alkali sorption were aluminosilicates differing in Al_2O_3 and SiO_2 content. Except for the
181 bauxite, the $\text{SiO}_2/\text{Al}_2\text{O}_3$ ratio is bigger than 1. All sorbents listed in Table 2, except Boke Bauxite and Cat
182 litter, were prepared from powder. The powder was mixed with water and formed into pellets. The pellets

183 were then exposed in Al_2O_3 crucibles for 5 h at 650 °C in an air atmosphere. The sorbents were fractionated
 184 afterwards to a particle size of 1.6 to 4 mm. Cat litter and Boke Bauxite samples were still available from
 185 previous experiments and were only fractionated accordingly.

186 **Table 2: Chemical composition of the KCl sorbents [wt-%]**

Sorbent	Al_2O_3	SiO_2	Fe_2O_3	K_2O	Na_2O	CaO	MgO	BaO	Total
Boke-Bauxite	75	1.3	17.4	-	-	-	-	-	93.8
Clinoptilolite	12.8	76.2	0.3	3.5	1	2.3	0.6	0.1	96.8
Kaolin	47.2	58.6	0.8	2.2	0.1	0.1	0.3	-	109.4
Bentonite	17.9	64	1.1	0.5	3.1	0.4	2.8	0.1	89.9
Cat litter	0.2	51.1	-	-	-	20.3	2.2	-	73.9
Montmorillonite	19.5	61	0.9	1.4	0.3	0.6	3.7	-	87.4
Foam	94.1	5.5	-	0.5	0.5	-	0.1	-	100.7

187 **Table 3: Specific surface areas [m^2/g] of the KCl sorbents**

Sorbent	Specific Surface
Boke-Bauxite	240.387
Clinoptilolite	26.366
Kaolin	15.761
Bentonite	15.538
Cat litter	95.083
Montmorillonite	60.417
Foam	1.358

188 Calibration measurements were carried out to correlate the signal intensity measured at the MBMS with
 189 the respective KCl concentrations. The experimental setup corresponded to the one for KCl sorption, with
 190 the exception of the absence of sorbent. Furthermore, the temperature of the KCl source was increased

191 step by step over several empty tube measurements. The KCl concentration in the syngas of an empty
192 tube measurement was determined via the weight loss of the KCl source.

193 The masses 74 and 76 can be directly assigned to $K^{35}Cl^+$ and $K^{37}Cl^+$, respectively. Furthermore, the masses
194 35, 37, and 39 show the presence of the KCl fragments $^{35}Cl^+$, $^{37}Cl^+$, and $^{39}K^+$. Since chlorine reacts to HCl in
195 the presence of water, signals could also be measured on masses 36 and 38. On the masses 56 and 58,
196 which correspond to KOH and $K^{18}OH$ respectively, no significant signal increases could be observed. The
197 quantification of the potassium chloride was carried out via mass 39, since it has the highest intensity.

198

199 **2.2 Experimental setup and sorbent materials for H_2S and HCl sorption**

200 A test rig consisting of a glass reactor, various gas pipes and a water vaporizer was set up. A programmable
201 furnace (AGNI Wärme- und Werkstofftechnik GmbH, Model: GHT-130-40-400-5H) was used to obtain a
202 temperature-controlled operation for the sorption experiments. The furnace temperature was controlled
203 via a PID controller acting on the temperature from the thermocouple integrated in the furnace (closed-
204 loop control). Gas analysis was performed using mass spectrometry (MAX300, Extrel). The gas composition
205 in the H_2S -sorption experiments was set to 73% H_2 , 13% Ar, 7% H_2O , 1% CO_2 , 6% CO, 60 ppm_v. This
206 composition was based on FactSage-equilibrium calculations of a synthesis gas leaving a biomass gasifier
207 operated at 650 °C. Since the H_2S sorption can be influenced by several syngas components, the H_2S was
208 mixed in with CO (0.1 %). The inert components (N_2) and the hydrocarbons (mainly CH_4) were substituted
209 by Ar. Because of the expected low H_2S concentration of the gas after H_2S purification, the H_2S signal was
210 determined with an electron multiplier. For the remaining signals, a faraday detector was used.

211 The H_2S sorption measurements always proceeded in the same way. First, the glass reactor filled with
212 sorption material was flooded with argon. In the second step, the reactor was disconnected from the gas
213 supply by closing the valves immediately upstream and downstream of the reactor. The argon gas flow
214 was then used to purge the pipelines (the gas flow was not yet loaded with water). The CO/ H_2S supply was
215 then started. Since the H_2S molecule adsorbed well on surfaces, a steady-state signal was obtained by

216 waiting until the H₂S signal plateaued. Next, the CO₂ stream and the H₂ stream were switched on. The valve
217 to the water supply was opened and the heating of the water started. The gas flow is thus directed onto
218 the water surface from above. After the first steam bubbles appeared, the gas (H₂, CO₂, Ar) was directed
219 through the water and loaded. Subsequently, the gas mixture was passed through the reactor. As soon as
220 the sorption material was saturated and the H₂S and HCl concentration increased, the sorption
221 experiments were stopped. At the end of each experiment, the water supply was stopped and the reactor
222 was flooded with argon.

223 Similar to the KCl sorption experiments, the HCl contamination was generated by evaporating a solid, i.e.,
224 NH₄Cl, in an Al₂O₃ boat at a fixed temperature during the experiment. The filled boat was attached to the
225 glass rod of the reactor with a metal wire. To fix the sorption material in the glass tube, a foam was used
226 as in the KCl sorption experiments (see Figure 2).

227

228 **Figure 2: Glass reactor filled with SrO with additional HCl source**

229 The experimental setup for HCl sorption differed only slightly from the experimental setup for H₂S
230 sorption: Helium was used here for the substitution of CH₄ and N₂. This change was made because Ar has
231 isotopes at masses 36 and 38 in addition to the main mass at 40. The main signal of HCl is at mass 36.
232 Since the temperature profile inside the furnace was very steep, the NH₄Cl was evaporated upstream the
233 furnace via a heating belt.
234 Table 4 lists all the chemicals used for HCl and H₂S sorption. The degree of purity was over 98 % for all
235 chemicals. The sorption properties of a commercially available lime (Sorbacal) from Rheinkalk were also

236 investigated. The chemical composition is given in Table 5. The values for the oxides were calculated from
237 the elements measured with ICP-OES. In previous studies, the CaO content was 98.1 wt-%. The lower
238 percentage can be explained by the fact that Ca(OH)_2 and CaCO_3 have formed during storage.

239 **Table 4: List of chemicals used for H_2S and HCl sorbents preparation**

Chemical	Assay	Supplier	CAS Registry Number
BaCO_3	$\geq 99\%$	Thermo Scientific, Schwerte	513-77-9
CaCO_3	$\geq 99.5\%$	Thermo Scientific, Schwerte	471-34-1
CeO_2	$\geq 99.5\%$	Thermo Scientific, Schwerte	1306-38-3
La_2O_3	$\geq 99.9\%$	Thermo Scientific, Schwerte	1312-81-8
SrCO_3	$\geq 98\%$	Fischer Scientific, Geel (Belgium)	1633-05-2
Y_2O_3	$\geq 99\%$	Merck, Darmstadt	1314-36-9
Zn_2TiO_4	$\geq 99.9\%$	Thermo Scientific, Schwerte	12036-43-0

240 **Table 5: Chemical composition of Sorbacal [wt-%]**

Sorbent	Al_2O_3	SiO_2	Fe_2O_3	CaO	MgO
Sorbacal	0.2	1	0.2	62.1	0.6

241 In order to ensure a concentration of 1 ppm_v H_2S in the syngas, conventional sorption materials like ZnO
242 could not be used, as these only show good sorption efficiency at temperatures below 600 °C. Therefore,
243 the Sr- and Ba-based sorption materials developed by Stemmler at Forschungszentrum Jülich were
244 included in the experiments. Stemmler's calculation showed that stabilized Ba-based sorbents keep the
245 1 ppm_v concentration even in a temperature range between 800 °C and 900 °C [39].

246 There is a slight solubility of BaO and CaO at temperatures above 1200 °C [4, 47, 39]. Moreover, all CaO -
247 SrO mixtures above 900 °C are forming a $\text{CaO}-\text{SrO}$ solution phase. Since increased marginal solubilities
248 exist, mixtures of 90 mol-% CaO and 10 mol-% SrO (or BaO), respectively 10 mol-% CaO and 90 mol-% SrO
249 were used for H_2S sorption.

250 For the preparation of the H₂S and HCl sorbents, raw powder (SrCO₃, ZnTi₂O₄, CeO₂, ...) was mixed with
251 water and formed to pellets. For the preparation of the Sr- and Ba-based sorption material, carbonates
252 were used. Preliminary thermo-gravimetric measurements showed that the decomposition reaction of
253 CaCO₃ to CaO is completed at about 800 °C to 850 °C, while SrCO₃ is completely decomposed at about
254 1150 °C and BaCO₃ at 1200 °C. Therefore, the sorbents used in the sorption experiment were prepared at
255 1600 °C in platinum crucibles.

256 For the production of reduced ceria sorption material, raw powder of CeO₂ was mixed with water and
257 heated in a 10% H₂-Ar atmosphere at 1500 °C for 72 h. Ce₂O₃ is stable in air if it has been produced at
258 temperatures above 1400 °C [48]. The specific surface area of the most highly reduced cerium oxide
259 sample was determined to be 0.21 m²/g.

260 The temperatures and exposure times of the other sorbents can be found in Table 6. To ensure a certain
261 mechanical stability of the sorption material, different temperatures and dwell times in the furnace were
262 used depending on the sorption material. The specific surface areas of the sorbents are listed in Table 8.

263 **Table 6: Manufacturing temperatures and duration**

Sorbent	Temperature [°C]	Duration [h]
La ₂ O ₃	1400	5
Zn ₂ TiO ₄	650	5
CeO ₂	1050	10
Y ₂ O ₃	1050	10

264

265

266 **Table 7: Specific surface areas of the H₂S and HCl sorbents [m²/g]**

Sorbent	Specific surface
Sorbacal	4.778
La ₂ O ₃	0.642
Zn ₂ TiO ₄	0.586
Y ₂ O ₃	1.761
90Ca10Ba	0.878
90Ca10Sr	0.242
10Ca90Sr	0.466
100Sr	0.209

267 As described earlier, the H₂S signal was recorded by mass spectrometry. Before starting the H₂S
 268 investigations, the signal intensities were correlated with the corresponding H₂S concentrations. In
 269 analogy to the KCl calibration, empty pipe measurements were carried out.

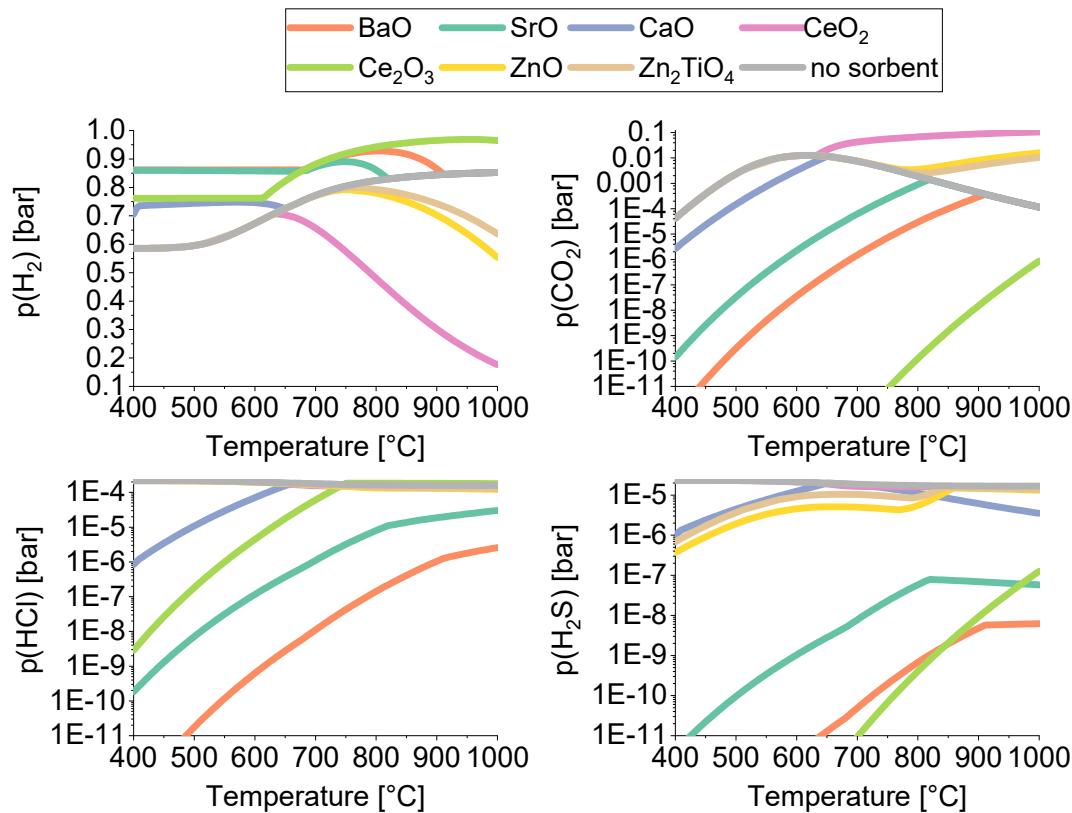
270 Since a syngas purity of less than 1 ppm_v H₂S was aimed for, H₂S concentrations of 60 ppm_v, 30 ppm_v, 10
 271 ppm_v, 5 ppm_v, 2.5 ppm_v, 1 ppm_v, and 0 ppm_v were chosen as calibration points. Since H₂S was mixed with
 272 CO, a decrease in the H₂S input was accompanied by a decrease in the CO input. The syngas fraction missing
 273 due to the reduction of the H₂S concentration was substituted by Ar. A total flow rate of 2 l/min was used
 274 for the calibration. The empty tube measurements resulted in a linear correlation between H₂S
 275 concentration and signal intensity at mass 34.

276 According to the KCl and H₂S calibration, a correlation between signal intensities and HCl concentrations
 277 was conducted prior to the HCl sorption experiments. An empty pipe calibration was carried out similar to
 278 the KCl calibration.

279

280 **3 Results and Discussion**

281 **3.1 Modeling results**


282 Depending on biomass, the syngas leaving the gasifier contains approximately 20 ppm_v H₂S, 160 ppm_v HCl,
283 and up to 22 ppm_v alkali chlorides [42]. After sorptive alkali hot gas cleaning on aluminosilicates at 650 °C,
284 the NaCl concentrations ranged up to 0.97 ppb_v, while the maximum KCl concentration was 1.5 ppb_v. With
285 concentrations of up to 188 ppm_v, in the purified syngas, the concentration of HCl was the only chlorine
286 species that increased significantly according to reaction 8. Since H₂S does not react with aluminosilicates,
287 its concentrations remained unchanged at 20 ppm_v.

288 Based on the results of the alkali cleaning calculations, further calculations for the sour gas cleaning were
289 carried out. Therefore, several metals/metal oxides as well as natural occurring alkali and alkaline earth
290 compounds had been considered.

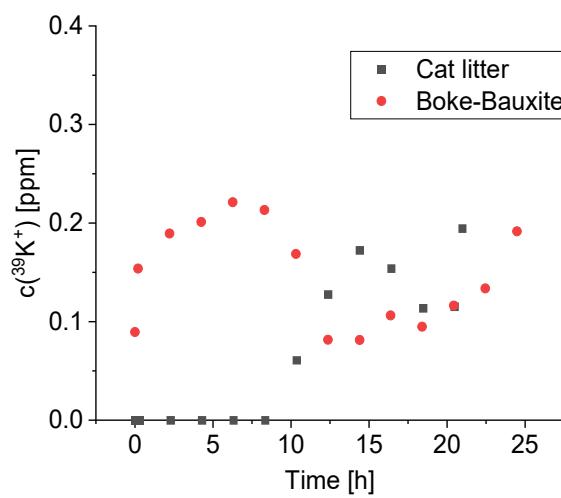
291 The results (Figure 3) show that SrO, BaO, and Ce₂O₃ were suitable to reduce the concentrations of H₂S
292 from approximately 20 ppm_v to values below 1 ppm_v (SrO: 2.8 ppb, BaO, 0.013 ppb, Ce₂O₃: 1 ppt) at 650
293 °C. These concentrations were all within the range of purities demanded for the use of SOFC in Table 1.
294 From a thermodynamic point of view, gas purification can therefore be carried out in the way described.
295 With the help of Zn-based sorption materials (ZnO and Zn₂TiO₄), the H₂S concentration could be reduced
296 to a few ppm_v (ZnO: 5.1 ppm_v, Zn₂TiO₄: 10.4 ppm_v) at 650 °C.

297 Similar statements can also be made about the HCl sorption at 650 °C with the sorption materials
298 mentioned. BaO and SrO sorbents could reduce the concentrations of HCl from around 188 ppm_v to 2.8
299 ppb_v and 0.37 ppm_v. Ce₂O₃ reduced the HCl amount to 17.7 ppm_v, while ZnO and Zn₂TiO₄ were not able to
300 reduce the input concentration as expected. Figure 3 shows another positive effect of BaO, SrO, and Ce₂O₃
301 on the syngas. The CO₂ concentrations of approximately 1% could be further reduced. This also has the
302 advantage of shifting the equilibrium to higher H₂ concentrations.

303 The sorption capacity of BaO- and SrO-based sorption materials with respect to CO_2 , H_2S , and HCl can be
 304 seen positively over a wide temperature range (400-1000 °C). Ce_2O_3 , on the other hand, lowered the HCl
 305 concentration significantly only up to about 700 °C.

306

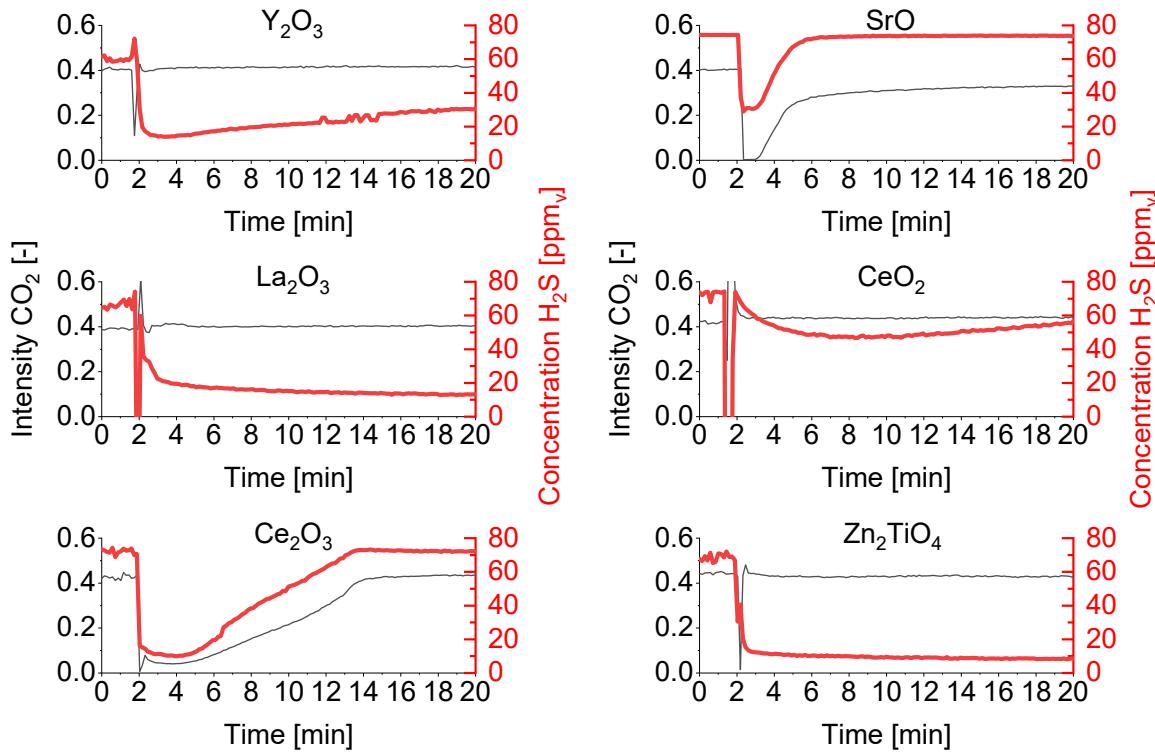
307 **Figure 3: Partial pressure of H_2 , CO_2 , HCl , and H_2S after $\text{H}_2\text{S}/\text{HCl}$ cleaning for different sorbents**


308 According to these calculations, the barium, strontium, and cerium-based sorption materials result in low
 309 H_2S and HCl concentrations. They are also temperature-stable at 650 °C and will be therefore investigated
 310 experimentally in the following.

311

312 **3.2 Experimental KCl sorption at 650 °C**

313 As described, in all investigations for the KCl removal, a KCl-loaded syngas, was passed through a fixed
 314 bed. The achievable KCl concentration was determined *in situ* using a MBMS. Reaction 8 shows a


315 dependence on the water content of the KCl concentration in the syngas. The gas mixture used in these
316 experiments (83% He, 10% H₂, and 7% H₂O) is thus a permissible simplification of the GICO syngas.
317 Figure 4 shows the KCl concentration profiles of different sorbents. All tested sorbents reduced the KCl
318 concentration to as low as 0.4 ppm_v and thus, are suitable sorbents. The KCl concentrations when using
319 Kaolin, Bentonite, Montmorillonite, and Clinoptilolite were below the detection limit.

320
321 **Figure 4: KCl concentration after streaming through a sorbent bed at 650 °C (inlet concentration: 83%**
322 **He, 10% H₂, 7% H₂O, and 25 ppm_v KCl, $\dot{V}_{tot} = 4 \text{ l/min}$, 30 g sorbent)**

323
324 **3.3 Experimental H₂S sorption at 650 °C**
325 In all investigations on H₂S cleaning, the syngases were passed through a fixed bed. The H₂S signal of the
326 purified gas was recorded by mass spectrometry (MS). Stemmler reported considerable delays in his
327 measurements since the H₂S molecule adsorbed well on surfaces [4]. Therefore, in this work the gas was
328 fed into a separate circuit so that the surfaces of the gas pipes were saturated with H₂S until shortly before
329 the glass reactor. To shorten the saturation time, the H₂S concentration in the gas was increased before
330 opening the sorbent circuit. The experiment was started as soon as there was a steady-state signal.
331 In order to obtain a rough overview of the sorption behavior of the different sorbents, sorption
332 experiments were carried out at a high flow rate (2 l/min). The most promising sorbents were then tested

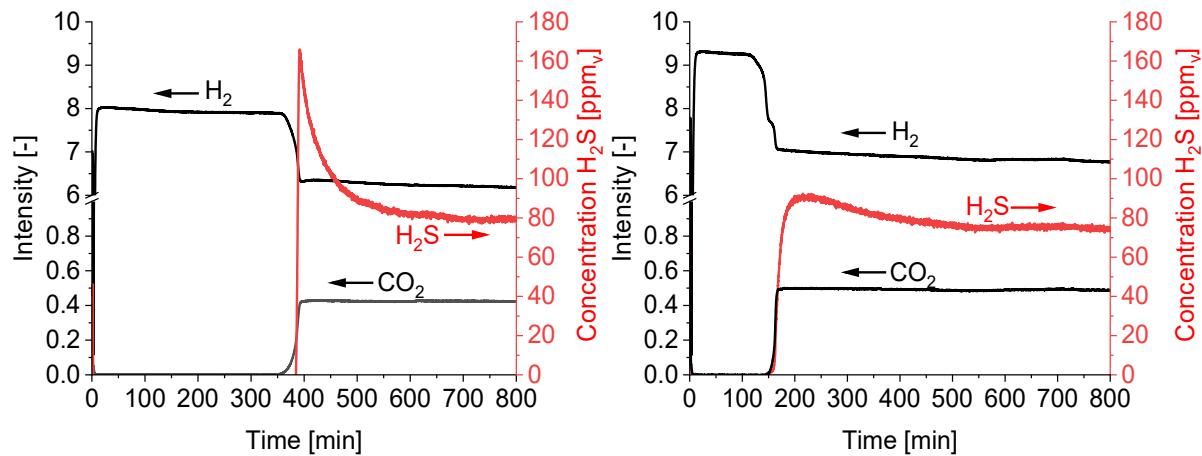
333 at a lower flow rate (200 ml/min) and with a longer sorption fill (100 g sorbent). Figure 5 shows the H₂S
 334 concentrations during the first 20 minutes of the H₂S sorption experiments for different sorbents. The CO₂
 335 intensity was also recorded. However, since the CO₂ concentration was not in the main focus of the
 336 investigations, the MS was not calibrated for CO₂ and the values are given as signal intensities, only.

337
 338 **Figure 5: Results of the mass spectrometric investigations: CO₂ intensity and H₂S concentrations [ppm_v]
 339 of different sorbents. Inlet concentration: 73% H₂, 13% Ar, 7% H₂O, 1% CO₂, 6% CO (60 ppm_v H₂S), T =
 340 650 °C, $\dot{V}_{\text{tot}} = 2 \text{ l/min}$, 30 g sorbent**

341 Although CO₂ leaves the gasifier with a low concentration of around 1 % due to the sorption with CaO
 342 (calculated thermodynamic equilibrium), SrO and Ce₂O₃ decreased the concentration even a little further.
 343 However, a rise in the CO₂ signal could be observed after just a few minutes for these sorption materials.
 344 Parallelly, the H₂S concentration increased. Therefore, CO₂ can be seen as a limiting factor in the conducted
 345 H₂S-sorption experiments: SrO reacts with CO₂ to form a carbonate (SrCO₃) while the reduced cerium oxide

346 (Ce₂O₃) oxidizes (CeO₂). Both, the oxidation of the Ce₂O₃ and the carbonatization of SrO took place quickly,
347 which is the reason that H₂S could only be removed well for a short time.

348 For Zn₂TiO₄ no decrease of the CO₂ signal could be seen, as ZnCO₃ is only stable at temperatures up to
349 approximately 300 °C. Zn₂TiO₄ lowered the H₂S concentration to single-digit ppm_v values for several hours
350 despite a high flow rate. Because La₂O₃ has similar properties compared to Ce₂O₃ (molar mass,
351 electronegativity), which according to the literature has a good H₂S sorption effect [21, 49, 50], it was also
352 used in the experiments. Since the 3-valent form of Lanthanum oxide (La₂O₃) and Yttria (Y₂O₃) are stable
353 under gasification conditions, the CO₂ signals remained constant. However, H₂S concentrations for La₂O₃
354 were as low as for Zn₂TiO₄. Moreover, La₂O₂S was detected after the sorption experiment using XRD.

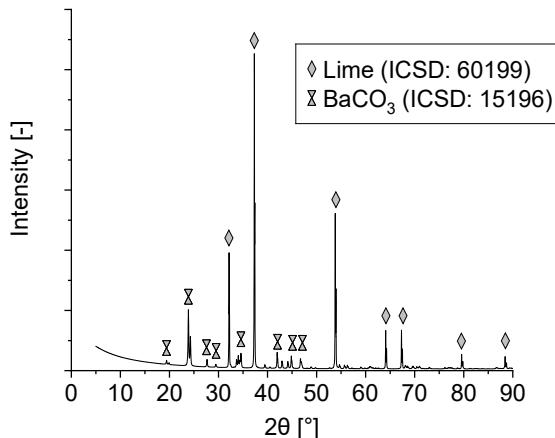

355 As the H₂S signal for SrO and Ce₂O₃ did not reach a plateau during sorption, it can be assumed that the gas
356 has not yet reached its achievable purity. In order to give a better estimate of the sorption capacity,
357 experiments were carried out with a reduced volume flow rate and a longer sorbent bed (100 g).

358 Furthermore, a stabilizing effect of CaO on SrO against carbonization was investigated by testing mixtures
359 of 10 mole-% CaO, 90 mole-% SrO (10Ca90Sr), and 90 mole-% CaO, 10 mole-% SrO (90Ca10Sr). In addition,
360 a 10 mole-% BaO, 90 mole-% CaO (90Ca10Ba) mixture was tested because it has achieved good results in
361 Stemmler's work [10].

362 Figure 6 (left) shows the H₂S concentration when cerium oxide (Ce₂O₃) is used. H₂S concentrations of less
363 than 1 ppm_v could be achieved for more than 5 hours. After saturation, an extreme increase in the H₂S
364 concentration (approximately 170 ppm_v) could be seen for a short time, which slowly decreased. This is
365 due to the fact that H₂S was released again. The oxidized form (CeO₂) was more stable than the sulfides
366 formed (Ce₂O₂S, Ce₂S₃).

367 The XRD analysis of the sorption material after the sorption experiment showed a single CeO₂ phase. No
368 more sulfides or reduced cerium oxides could be detected.

369 The sorption with the BaO-sorbent (10Ba90Ca) also showed an increase in the H₂S concentration above
370 the initial concentration of 60 ppm_v after deactivation of the sorption material (Figure 6, right). The sorbent
371 was also able to keep the H₂S concentration below 1 ppm_v for approximately 3 h.

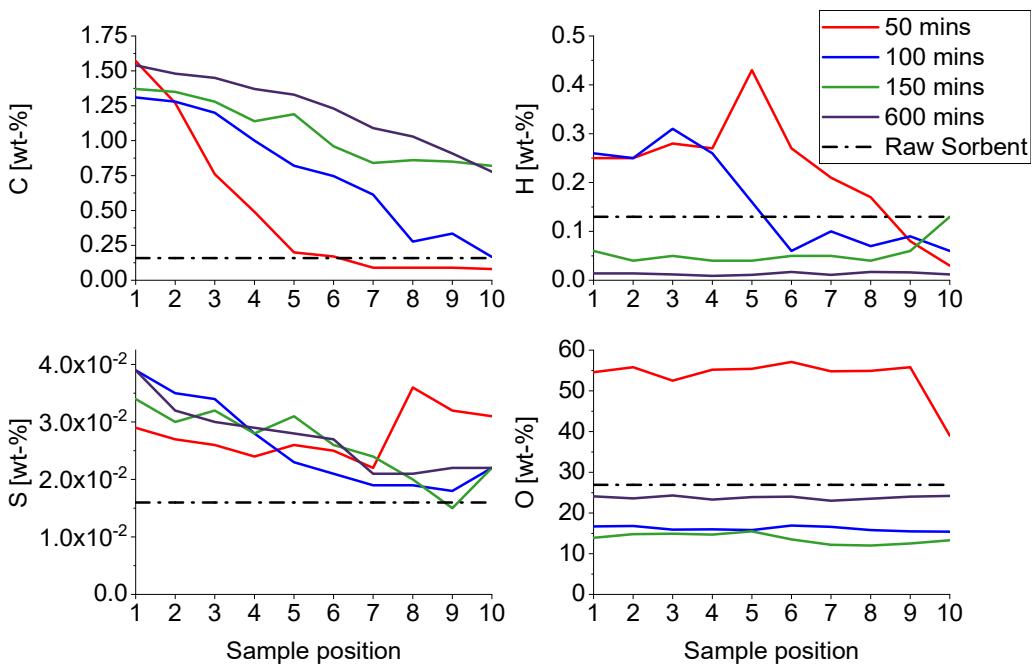


372

373 **Figure 6: Results of the mass spectrometric investigations: CO₂ intensity and H₂S concentrations [ppm_v]**
374 **of Ce₂O₃ (l.) and 10Ba90Ca (r.). Inlet concentration: 73% H₂, 13% Ar, 7% H₂O, 1% CO₂, 6% CO (60 ppm_v,**

375 H₂S), T = 650 °C, $\dot{V}_{\text{tot}} = 0,2 \text{ l/ min}$, 100 g sorbent

376 Since both the Ba-sorbent and the Ce-sorbent also reacted with CO₂, the thermodynamic equilibrium
377 shifted in the direction of extremely high hydrogen concentrations. However, no sulfide could be detected
378 after the experiment due to the release of H₂S after sorption. The XRD analysis of the sorption material
379 showed that the formation of CaCO₃ was suppressed and that only BaCO₃ and CaO (Lime) were present
380 (see Figure 7).


381

382 **Figure 7: XRD spectrum of 10Ba90Ca after sorption experiment**

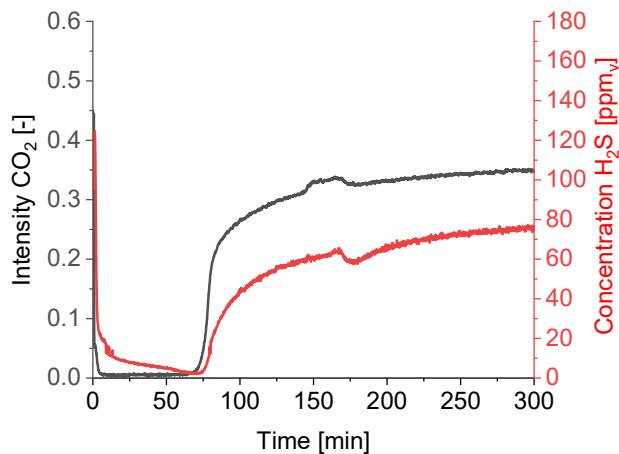
383 As already described, 1 % CO₂ was selected for the input concentration in the experiments, because this is
 384 the minimum CO₂ concentration that can be achieved with CaO at 650 °C. Thus, it is confirmed that BaO
 385 in the sorbent was reducing the CO₂ concentration further.

386 To gain a better understanding of the deactivation behavior of 10Ba90Ca over time, the sorption
 387 experiment was stopped after 50, 100, 150, and 600 minutes. At these times, the syngas was replaced by
 388 argon. After the furnace had cooled down, the fixed bed was divided into ten fractions of equal size for
 389 chemical analysis.

390 Figure 8 shows the evaluation of the elemental analysis. Sample position 1 refers to samples taken at the
 391 gas inlet side, while sample position 10 are samples taken at the gas outlet side.

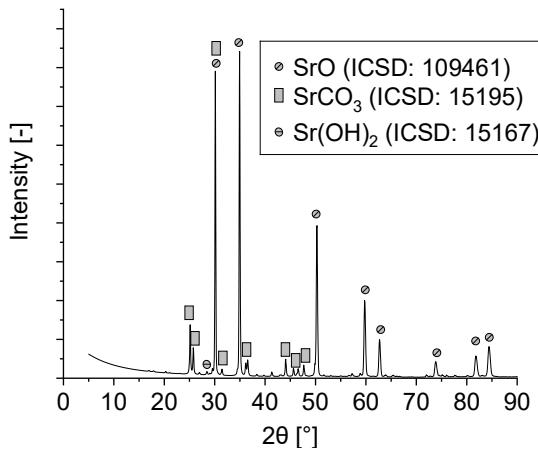
392

393 **Figure 8: Elemental analysis of 10Ba90Ca after 50, 100, 150, and 600 minutes of sorption time**


394 It can clearly be seen that the C concentrations increased with increasing residence time in the reactor.

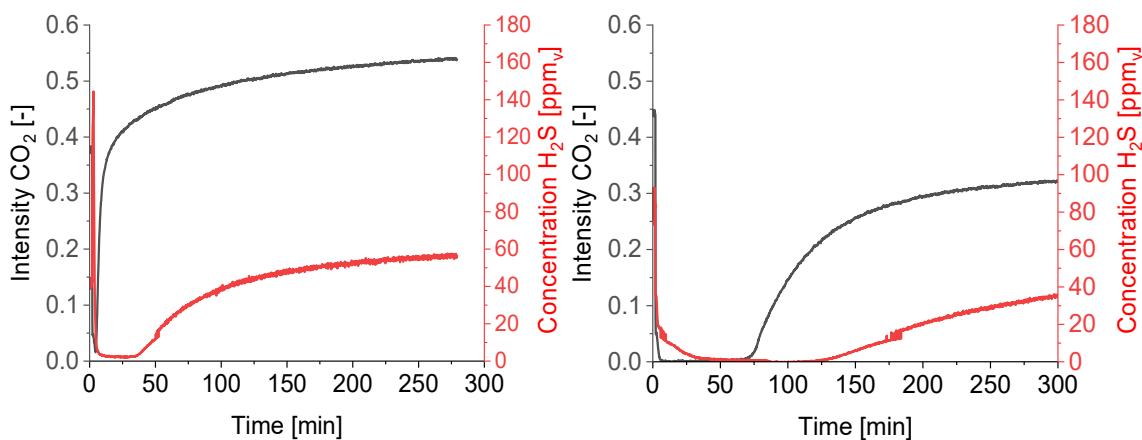
395 Furthermore, higher C concentrations were observed at the reactor inlet. The C-analysis of an unloaded
396 reference sample (dotted line) show that hardly any carbonates were present after sorbent production.

397 Since only gases such as CO_2 and CO were present as carbon sources, the increase in C concentration was
398 due to the formation of BaCO_3 (CaCO_3 was not formed under these conditions). The higher C
399 concentrations at the reactor inlet (sample position 1) compared to the reactor outlet (sample position
400 10) were due to the higher CO_2 concentrations at the reactor inlet. Lower amounts of CO_2 arrived at the
401 back of the reactor with a time delay. After 50 minutes, approximately 50 % of the sorption material has
402 reacted to BaCO_3 .

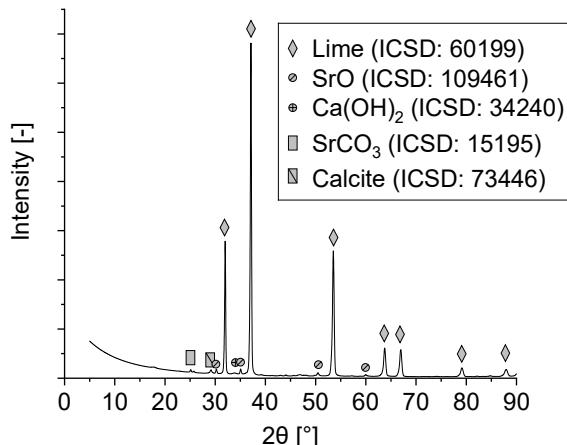

403 For the sulfur concentration, there was also a corresponding drop in concentration along the bed. Only
404 after 50 minutes an increase of the sulfur concentration for the samples that were located close to the gas
405 outlet (sample positions 8-10) could be observed. Since the sulfur concentration at positions 8-10 has
406 decreased over time while the C concentration has increased, it is reasonable to assume that the

407 carbonates were more stable than the sulfur compounds and that the sulfur components (BaS) were
408 driven further to the gas outlet. However, the leaching of the sulfur components did not occur completely.
409 Figure 9 shows the H₂S sorption process when using SrO. The 1 ppm_v H₂S target could not be achieved
410 here. In contrast to Ce₂O₃ and the Ba-based sorption material, there was no extreme increase in the H₂S
411 concentration after deactivation by the CO₂.

412
413 **Figure 9: Results of the mass spectrometric investigations: CO₂ intensity and H₂S concentrations [ppm_v]
414 of SrO. Inlet concentration: 73% H₂, 13% Ar, 7% H₂O, 1% CO₂, 6% CO (60 ppm_v H₂S), T = 650 °C, $\dot{V}_{\text{tot}} = 0,2$
415 l/min, 100 g sorbent**


416 Figure 10 shows that SrCO₃ has been formed. Nevertheless, SrO could still be detected in the sample by
417 XRD. Possibly only an external SrCO₃ layer has been formed. The inner part of the sorbent could still
418 consist of SrO after the sorption experiment since the SrO sorbent had a small specific surface area
419 (0.209 m²/g, see Table 8).

420

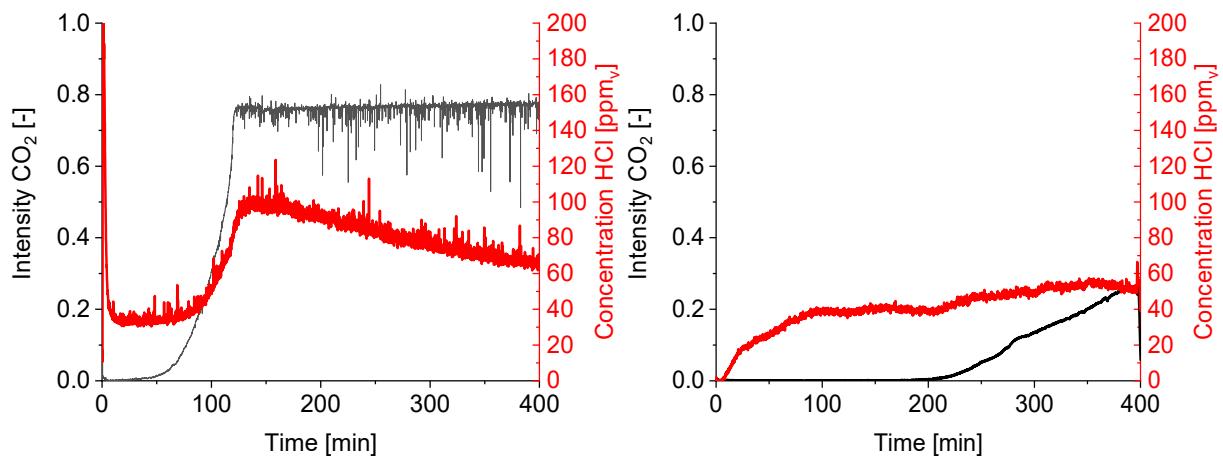

421 **Figure 10: XRD spectrum of SrO after sorption experiment**

422 Figure 11 shows the effect of CaO in a CaO-SrO mixture on the H₂S concentration. It can be seen that in a
 423 CaO rich sorbent material (90Ca10Sr) the CO₂ concentration increased after a few minutes. As explained
 424 earlier, CaO cannot reduce CO₂ any longer. Since CO₂ and H₂S intensities did not run parallel for both
 425 90Ca10Sr and 10Ca90Sr, it is assumed that a mixed phase was present that reduced sulfur well. The XRD
 426 analysis of 90Ca10Sr showed that three Ca_{1-x}Sr_xO₂ mixed crystal phases were present, two rich in Ca with
 427 a=4.838 Å and 4.859 Å and one rich in Sr with a=5.112 Å.

428

429 **Figure 11: Results of the mass spectrometric investigations: Influence of CaO on the stabilization of the**
 430 **Sr-sorbent. CO₂ intensity and H₂S concentrations [ppm_v] of 90Ca10Sr (l.) and 10Ca90Sr (r.). Inlet**
 431 **concentration: 73% H₂, 13% Ar, 7% H₂O, 1% CO₂, 6% CO (60 ppm_v H₂S), T = 650 °C, V_{tot} = 0,2 l/min,**
 432 **100 g sorbent**

433


434 **Figure 12: XRD spectrum of 90Ca10Sr after sorption experiment**

435 **3.4 Experimental HCl sorption at 650 °C**

436 For the HCl sorption experiments, the two sorbents with the lowest equilibrium concentration according
 437 to model calculations (10Ba90Ca and SrO) were used. Similar to the KCl sorption experiments, the
 438 contamination was generated by evaporation of a source. In order to prevent the BaO sorption material
 439 from being deactivated by CO₂ during the heating phase of the NH₄Cl, the heating tape was turned on 7 h
 440 before the gas was passed through the glass reactor. Thus, HCl concentrated in the reactor and the
 441 equilibrium plateau was reached after only a few minutes. Compared to the H₂S measurement (see Figure
 442 6, right), the HCl sorption showed an earlier increase of CO₂ after only 20 minutes (see Figure 13, left).
 443 As in the H₂S sorption experiments, the sorption material in the HCl sorption experiments was deactivated
 444 by CO₂ in the syngas. The HCl signal in the 90Ca10Ba sorption measurement "shot up" beyond the input
 445 concentration and decreased again. This is similar to the H₂S sorption measurement. It indicates that HCl
 446 was released.

447 The experimental procedure for SrO deviated a little. Here the heating tape, which was used for the
 448 evaporation of the NH₄Cl, was switched on two minutes before the glass reactor was opened. Since pure
 449 SrO was used here, the deactivation time was longer than for the Ba-based sorbent (see Figure 13, right).

450

451

452 **Figure 13: Results of the mass spectrometric investigations: CO₂ intensity and HCl concentrations**

453 **[ppm_v] of 10Ba90Ca (l.) and SrO (r.). Inlet concentration: 73% H₂, 13% Ar, 7% H₂O, 1% CO₂, 6% CO,**

454 **50 ppm_v HCl, T = 650 °C, $\dot{V}_{tot} = 0,2$ l/min, 100 g sorbent**

455 The tested sorbents were not able to noticeably reduce HCl concentrations. Both sorption materials could
 456 only reduce the HCl concentration for a short time by about 10-20 ppm_v: 10Ba90Ca lowered the HCl
 457 concentration for about 50 minutes from about 50 ppm_v (input concentration) to about 30 ppm_v, SrO for
 458 about 100 minutes from about 50 ppm_v (input concentration) to 40 ppm_v.

459 Moreover, neither for 10Ba90Ca, nor for SrO, Cl phases could be detected via XRD after the experiment.

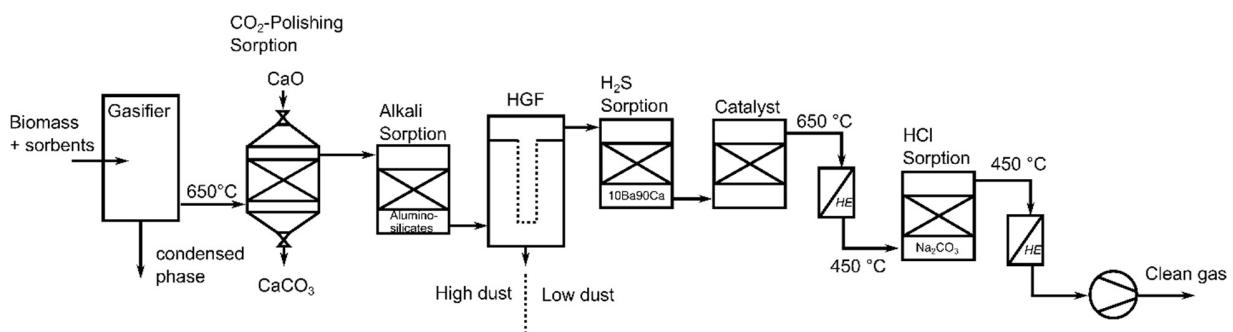
460 This is due to the low HCl concentration in the syngas and the short deactivation time. Therefore, the
 461 samples were analyzed with EDXRF. Chlorine could be detected in all samples. However, only a semi-
 462 quantitative observation was possible. In contrast to the spectral lines of the other elements, the intensity
 463 of the chlorine K-alpha line varied strongly, indicating inhomogeneous chlorine distribution in the sample.

464

465 **3.5 Comparison of the FactSage model with experimental observations**

466 Aluminosilicates showed good reduction potential for the alkali compounds KCl and NaCl in the
 467 calculations. This could be confirmed by the laboratory experiments with MBMS. The tested
 468 aluminosilicates reduced the KCl concentration to levels well below 1 ppm_v in the experiments.

469 Similar observations could be made for the H₂S sorption. According to the calculations, Ce₂O₃, BaO, and
470 SrO could significantly reduce the H₂S concentration below 1 ppm_v. This was also verified by the fixed bed
471 sorption experiments. However, since the detection limit of the used mass spectrometer is about 1 ppm_v,
472 no conclusions can be drawn about the exact actual purities of the gas for these three sorption materials.
473 An increased H₂ concentration was also predicted for all three sorbents, which was also experimentally
474 demonstrated. In comparison to the materials mentioned above, Zn₂TiO₄ was used as a conventional
475 sorbent. Calculations and experiments proved that there is no deactivation by CO₂ here. The H₂S
476 concentration achieved in the sorption experiment was also within the range of the model (1-10 ppm_v).
477 Only the experiments for HCl sorption deviated strongly from the predictions. The tested sorbents could
478 not really reduce HCl. This may be due to incorrect or insufficient data in the database and the non-
479 consideration of kinematic effects, since only equilibria were covered by the model.


480

481 **3.6 HGC concept for the GICO process**

482 The present results indicate that the reduction of H₂S at 650 °C using either Ce₂O₃, SrO or BaO is only
483 possible if the syngas has a low CO₂ content, since these sorbents are deactivated by carbonation or
484 oxidation. Therefore, a low CO₂ content is beneficial when utilizing Ce₂O₃, SrO or BaO for high-temperature
485 sorption. However, the GICO experimental plant may not achieve this theoretical value in its fluidized bed.
486 CO₂ concentrations between 3-5 % are expected. To address this, a CO₂ polishing reactor that could
487 decrease the CO₂ content can be added to the HGC unit of the gasifier side (see Figure 14).

488 Since aluminosilicates were able to reduce the alkali concentrations to the sub ppm_v range in the sorption
489 experiments at 650 °C, the gas does not have to be cooled down before alkali cleaning. Since HCl is released
490 during alkali binding into aluminosilicates (reaction 8), HCl cleaning must be carried out downstream in
491 the process. A hot gas filter to remove particles is integrated after the alkali cleaning unit operating at 650
492 °C. It is important that the alkali cleaning is carried out before the filter so that it does not become clogged
493 due to the condensation of alkali components. Afterwards, the gas reaches the H₂S sorption reactor

494 utilizing Ce_2O_3 , BaO - or SrO -based sorbents. To ensure the cracking of tar, which is not subject of the
 495 present investigations, the gas is lead through another reactor operating at $650\text{ }^\circ\text{C}$. Since a sufficient HCl
 496 reduction by BaO - or SrO -based sorbents could not be confirmed experimentally, adsorption by alkali
 497 carbonates is proposed. For successful HCl purification with Na_2CO_3 , the temperature has to be lowered
 498 to $450\text{ }^\circ\text{C}$ in a heat exchanger. At temperatures above $550\text{ }^\circ\text{C}$ the sorption of HCl is not feasible as Na -based
 499 sorbents will release some of the chlorine as NaCl . The gas temperature can then be adjusted in another
 500 heat exchanger according to the conditions of the downstream equipment.

502 **Figure 14: Layout of a HGC for the GICO process**

503

504 **4 Summary and Conclusions**

505 Equilibrium calculations with FactSage were conducted for the hot gas cleaning unit of the GICO gasifier,
 506 proving that SrO - and BaO -based sorbents not only sufficiently reduced the H_2S , but also the HCl
 507 concentration into the sub ppm_v range. Furthermore, aluminosilicates could reduce the concentration of
 508 alkali chlorides below 1 ppm_v.

509 In order to verify the modeling results, a test rig has been set up for sour gas sorption ($\text{H}_2\text{S}+\text{HCl}$) using
 510 different metal oxides in a fixed bed. In this work, a simultaneous recording of the intensity and
 511 concentration curves of CO_2 , H_2S and H_2 was achieved using mass spectrometry. Furthermore, water was
 512 used in all sorption experiments, which counteracts the binding of H_2S (reaction 1). With this setup, a
 513 reduction of the inorganic trace substance H_2S below 1 ppm_v could be detected for several hours (Ce_2O_3 :
 514 5 h, 90Ca10Ba: 2 h) at $650\text{ }^\circ\text{C}$ which is considered sufficient to prevent catalyst poisoning. Ce_2O_3 and

515 90Ca10Ba can therefore be recommended for H₂S sorption from a thermodynamic point of view.
516 Moreover, due to the simultaneous reaction between Ce₂O₃, respectively BaO, and CO₂, a further shift to
517 higher hydrogen concentrations could be observed by the water gas shift reaction. Zinc titanate, the most
518 effective conventional sulfur sorbent tested, only reduced H₂S levels to around 7 ppm_v.
519 On the other hand, 90Ca10Ba was not able to reduce the HCl concentration to a large extent.
520 Concentrations could only be reduced from 50 to 40 ppm_v. Thus, contrary to initial thermodynamic
521 calculations, this sorbent cannot be recommended for the sorption of H₂S and HCl simultaneously. The
522 reasons for this phenomenon require further investigation. It may be related to the reaction kinetics
523 between HCl and the sorption material, or it could indicate a need for improvements to the database.
524 Consequently, it is proposed to remove HCl in a separate cleaning step at lower temperatures, e.g., on
525 alkali carbonates at 450 °C.

526 It was found that six aluminosilicates were effective in reducing KCl levels to below 1 ppm_v, with four of
527 them achieving concentrations below 400 ppb_v after 20 hours at 650 °C. Since HCl is released when KCl is
528 embedded using aluminosilicates, it is advisable to remove KCl before HCl.

529
530 **5 Acknowledgements**
531 This work has received funding from the European Union's Horizon 2020 research and innovation program
532 (Grant Agreement No.: 101006656). Further information are available at: <https://www.gicoproject.eu/>.
533 We thank the colleagues of ZEA 3 of Forschungszentrum Jülich for chemical analysis.

534
535 **5.1 References**
536 1. Ngo T, Chiang KY, Liu CF et al. (2021) Hydrogen production enhancement using hot gas cleaning system
537 combined with prepared Ni-based catalyst in biomass gasification. International Journal of Hydrogen
538 Energy 46(20): 11269–11283. doi: 10.1016/j.ijhydene.2020.08.279

539 2. Marcantonio V, Müller M, Bocci E (2021) A Review of Hot Gas Cleaning Techniques for Hydrogen

540 Chloride Removal from Biomass-Derived Syngas. *Energies* 14(20): 6519. doi: 10.3390/en14206519

541 3. Buchireddy PR, Peck D, Zappi M et al. (2021) Catalytic Hot Gas Cleanup of Biomass Gasification

542 Producer Gas via Steam Reforming Using Nickel-Supported Clay Minerals. *Energies* 14(7): 1875. doi:

543 10.3390/en14071875

544 4. Stemmler M (2010) Chemische Heißgasreinigung bei Biomassevergasungsprozessen. Fakultät für

545 Maschinenwesen. RWTH Aachen University, PhD-Thesis. Schriften des Forschungszentrums Jülich :

546 Reihe Energie & Umwelt, Bd. 90, Aachen

547 5. Porbatzki D, Stemmler M, Müller M (2011) Release of inorganic trace elements during gasification of

548 wood, straw, and miscanthus. *Biomass and Bioenergy* 35: S79-S86. doi:

549 10.1016/j.biombioe.2011.04.001

550 6. European Union (2021) Homepage GICO Project-GICO Process. Accessed 14.07.2024.

551 <https://www.gicoproject.eu/gico-process/>. Accessed 14 Jul 2024

552 7. Westmoreland PR, Harrison DP (1976) Evaluation of candidate solids for high-temperature

553 desulfurization of low-Btu gases. *Environ. Sci. Technol.* 10(7): 659–661. doi: 10.1021/es60118a010

554 8. Furimsky E, Yumura M (1985) Solid adsorbents for removal of hydrogen sulphide from hot gas. doi:

555 10.4095/302594

556 9. Vamvuka D, Arvanitidis C, Zachariadis D (2004) Flue Gas Desulfurization at High Temperatures: A

557 Review. *Environmental Engineering Science* 21(4): 525–548. doi: 10.1089/1092875041358557

558 10. Stemmler M, Tamburro A, Müller M (2013) Laboratory investigations on chemical hot gas cleaning of

559 inorganic trace elements for the “UNIQUE” process. *Fuel* 108: 31–36. doi: 10.1016/j.fuel.2011.05.027

560 11. Focht GD, Ranade PV, Harrison DP (1988) High-temperature desulfurization using zinc ferrite:

561 Reduction and sulfidation kinetics. *Chemical Engineering Science* 43(11): 3005–3013. doi:

562 10.1016/0009-2509(88)80053-8

563 12. Diego LFd, García-Labiano F, Adánez J et al. (1999) Factors Affecting the H₂S Reaction with
564 Noncalcined Limestones and Half-Calcined Dolomites. *Energy Fuels* 13(1): 146–153. doi:
565 10.1021/ef980145f

566 13. Katalambula H, Bawagan A, Takeda S (2001) Mineral attachment to calcium-based sorbent particles
567 during in situ desulfurization in coal gasification processes. *Fuel Processing Technology* 73(2): 75–93.
568 doi: 10.1016/S0378-3820(01)00200-4

569 14. Akiti T, Constant K, Doraiswamy L et al. (2001) Development of an advanced calcium-based sorbent
570 for desulfurizing hot coal gas. *Advances in Environmental Research* 5(1): 31–38. doi: 10.1016/S1093-
571 0191(00)00039-3

572 15. Katalambula H, Escallón MM, Takeda S (2001) Influence of Ca-Based Sorbent Particle Size on the
573 Occurrence of Solid–Solid Reactions during in-Situ Desulfurization of the Coal-Derived Gas. *Energy*
574 *Fuels* 15(2): 317–323. doi: 10.1021/ef000162g

575 16. Hartman M, Svoboda K, Trnka O et al. (2002) Reaction between Hydrogen Sulfide and Limestone
576 Calcines. *Ind. Eng. Chem. Res.* 41(10): 2392–2398. doi: 10.1021/ie010805v

577 17. Álvarez-Rodríguez R, Clemente-Jul C (2008) Hot gas desulphurisation with dolomite sorbent in coal
578 gasification. *Fuel* 87(17–18): 3513–3521. doi: 10.1016/j.fuel.2008.07.010

579 18. Sotirchos SV, Smith AR (2004) Performance of Porous CaO obtained from the decomposition of
580 calcium-enriched bio-oil as Sorbent for SO₂ and H₂S Removal. *Ind. Eng. Chem. Res.* 43(6): 1340–1348.
581 doi: 10.1021/ie034176w

582 19. Stemmler M, Tamburro A, Müller M (2013) Thermodynamic modelling of fate and removal of alkali
583 species and sour gases from biomass gasification for production of biofuels. *Biomass Conv. Bioref.*
584 3(3): 187–198. doi: 10.1007/s13399-013-0073-7

585 20. Zeng Y, Kaytakoglu S, Harrison D (2000) Reduced cerium oxide as an efficient and durable high
586 temperature desulfurization sorbent. *Chemical Engineering Science* 55(21): 4893–4900. doi:
587 10.1016/S0009-2509(00)00117-2

588 21. Flytzani-Stephanopoulos M, Sakbodin M, Wang Z (2006) Regenerative adsorption and removal of H₂S
589 from hot fuel gas streams by rare earth oxides. *Science (New York, N.Y.)* 312(5779): 1508–1510. doi:
590 10.1126/science.1125684

591 22. Marcantonio V, Bocci E, Ouveltjes JP et al. (2020) Evaluation of sorbents for high temperature
592 removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by
593 using Aspen Plus. *International Journal of Hydrogen Energy* 45(11): 6651–6662. doi:
594 10.1016/j.ijhydene.2019.12.142

595 23. A. Hatunoglu, V. Marcantonio, E. Ciro et al. (2021) D.2.4. High temperature secondary sorbents
596 selection for inorganic compounds removal and related lab scale fixed bed reactor performance. EU
597 Blaze Project Report, L'Aquila

598 24. Han K, Li X, Qi J et al. (2021) Synergistic effect of additives and blend on sulfur retention, on release
599 and ash fusibility during combustion of biomass briquettes. *International Journal of Green Energy*
600 18(2): 187–202. doi: 10.1080/15435075.2020.1847116

601 25. Gehrig M, Wöhler M, Pelz S et al. (2019) Kaolin as additive in wood pellet combustion with several
602 mixtures of spruce and short-rotation-coppice willow and its influence on emissions and ashes. *Fuel*
603 235: 610–616. doi: 10.1016/j.fuel.2018.08.028

604 26. Punjak WA, Shadman F (1988) Aluminosilicate sorbents for control of alkali vapors during coal
605 combustion and gasification. *Energy Fuels* 2(5): 702–708. doi: 10.1021/ef00011a017

606 27. Dou B, Shen W, Gao J et al. (2003) Adsorption of alkali metal vapor from high-temperature coal-
607 derived gas by solid sorbents. *Fuel Processing Technology* 82(1): 51–60. doi: 10.1016/s0378-
608 3820(03)00027-4

609 28. Uberoi M, Punjak WA, Shadman F (1990) The kinetics and mechanism of alkali removal from flue gases
610 by solid sorbents. *Progress in Energy and Combustion Science* 16(4): 205–211. doi: 10.1016/0360-
611 1285(90)90029-3

612 29. Zheng Y, Jensen PA, Jensen AD (2008) A kinetic study of gaseous potassium capture by coal minerals
613 in a high temperature fixed-bed reactor. *Fuel* 87(15-16): 3304–3312. doi: 10.1016/j.fuel.2008.05.003

614 30. Riese T de, Eckert D, Hakim L et al. (2022) Modelling the Capture of Potassium by Solid Al-Si Particles
615 at Pulverised Fuel Conditions. *Fuel* 328: 125321. doi: 10.1016/j.fuel.2022.125321

616 31. Fujita S, Suzuki K, Mori T et al. (2003) A New Technique to Remove Hydrogen Chloride Gas at High
617 Temperature Using Hydrogrossular. *Ind. Eng. Chem. Res.* 42(5): 1023–1027. doi: 10.1021/ie020158n

618 32. Khaled KF, Abdel-Rehim SS, Sakr GB (2012) On the corrosion inhibition of iron in hydrochloric acid
619 solutions, Part I: Electrochemical DC and AC studies. *Arabian Journal of Chemistry* 5(2): 213–218. doi:
620 10.1016/j.arabjc.2010.08.015

621 33. Verdone N, Filippis P de (2006) Reaction kinetics of hydrogen chloride with sodium carbonate.
622 *Chemical Engineering Science* 61(22): 7487–7496. doi: 10.1016/j.ces.2006.08.023

623 34. Li Y, Wu Y, Gao J (2004) Study on a New Type of HCl-Removal Agent for High-Temperature Cleaning of
624 Coal Gas. *Ind. Eng. Chem. Res.* 43(8): 1807–1811. doi: 10.1021/ie034217o

625 35. Chyang C-S, Han Y-L, Zhong Z-C (2009) Study of HCl Absorption by CaO at High Temperature. *Energy*
626 & Fuels 23(8): 3948–3953. doi: 10.1021/ef900234p

627 36. Abbasian J, Wangerow JR, Hill AH (1993) Effect of HCl on sulfidation of calcium oxide. *Chemical*
628 *Engineering Science* 48(15): 2689–2695. doi: 10.1016/0009-2509(93)80181-O

629 37. Fujita S, Suzuki K, Shibasaki Y et al. (2002) Synthesis of hydrogarnet from molten slag and its hydrogen
630 chloride fixation performance at high temperature. *J Mater Cycles Waste Manag* 4(1): 70–76. doi:
631 10.1007/s10163-001-0059-6

632 38. Fujita S, Suzuki K, Ohkawa M et al. (2001) Reaction of Hydrogrossular with Hydrogen Chloride Gas at
633 High Temperature. *Chem. Mater.* 13(8): 2523–2527. doi: 10.1021/cm000863r

634 39. Stemmler M, Müller M (2010) D.4.1. Report on sorbents for alkali and sour gas removal. EU
635 GreenSyngas-Project Report, Jülich

636 40. Bale CW, Bélisle E, Chartrand P et al. (2016) FactSage thermochemical software and databases, 2010–
637 2016. *Calphad* 54: 35–53. doi: 10.1016/j.calphad.2016.05.002

638 41. Yazhenskikh E, Jantzen T, Hack K et al. (2019) A new multipurpose thermodynamic database for oxide
639 systems. *Rasplavy*(2): 116–124. doi: 10.1134/S0235010619010237

640 42. Kopsch M, Lebendig F, Yazhenskikh E et al. (2024) Effect of HTC and Water-Leaching of Low-Grade
641 Biomasses on the Release Behavior of Inorganic Constituents in a Calcium Looping Gasification Process
642 at 650 °C. *Energy Fuels* 38(17): 16504–16519. doi: 10.1021/acs.energyfuels.4c02833

643 43. Wolf KJ, Müller M, Hilpert K et al. (2004) Alkali Sorption in Second-Generation Pressurized Fluidized-
644 Bed Combustion. *Energy & Fuels* 18(6): 1841–1850. doi: 10.1021/ef040009c

645 44. Escobar I, Müller M (2007) Alkali Removal at about 1400 °C for the Pressurized Pulverized Coal
646 Combustion Combined Cycle. 2. Sorbents and Sorption Mechanisms. *Energy & Fuels* 21(2): 735–743.
647 doi: 10.1021/ef0605145

648 45. Weber CM (2008) Untersuchungen zum Alkaliverhalten unter Oxycoal-Bedingungen. Fakultät für
649 Maschinenwesen. RWTH Aachen University, PhD-Thesis. Schriften des Forschungszentrums Jülich :
650 [...], Reihe Energie & Umwelt, Bd. 24, Aachen

651 46. Wolf KJ (2003) Untersuchungen zur Freisetzung und Einbindung von Alkalimetallen bei der
652 reduzierenden Druckwirbelschichtverbrennung. Fakultät für Maschinenwesen. RWTH Aachen
653 University, PhD-Thesis, Aachen

654 47. van der Kemp W, Blok JG, van der Linde PR et al. (1994) Binary alkaline earth oxide mixtures:
655 Estimation of the excess thermodynamic properties and calculation of the phase diagrams. *Calphad*
656 18(3): 255–267. doi: 10.1016/0364-5916(94)90032-9

657 48. Brauer G (ed) (1978) Handbuch der präparativen anorganischen Chemie. In drei Bänden, 3., umgearb.
658 Aufl. Enke, Stuttgart

659 49. Mayernick AD, Li R, Dooley KM et al. (2011) Energetics and Mechanism for H₂S Adsorption by Ceria-
660 Lanthanide Mixed Oxides: Implications for the Desulfurization of Biomass Gasifier Effluents. *J. Phys.*
661 *Chem. C* 115(49): 24178–24188. doi: 10.1021/jp206827n

662 50. Mullins DR, McDonald TS (2007) Adsorption and reaction of hydrogen sulfide on thin-film cerium
663 oxide. *Surface Science* 601(21): 4931–4938. doi: 10.1016/j.susc.2007.08.007